Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский государственный технический университет» Кафедра Автоматизированных систем управления

Отчет по лабораторной работе №3 по дисциплине «Методы анализа данных» Кластеризация. SPSS

Факультет: АВТФ

Группа: АВТ-412

Выполнили: Лазаревич М.М.

Евтушенко Н.С.

Проверила: Ганелина Н.Д.

Новосибирск 2017 г.

Цель Работы:

Познакомиться с теорией и практикой решения задачи кластеризации в среде SPSS Statistic.

Постановка задачи:

Для выбранного массива данных (в нашем случае seeds) провести кластерный анализ различными методами. Проанализировать полученные результаты.

Описание исходных данных:

Были выбраны исходные данные seeds (семена) – массив параметров зёрен трёх различных сортов пшеницы. Данный массив включает следующие параметры:

- area A площадь
- perimeter P периметр
- compactness $C = 4*pi*A/P^2 компактность$
- length of kernel длина зерна
- width of kernel ширина зерна
- asymmetry coefficient коэффициент асимметрии
- length of kernel groove длина канавки зерна

Описательные статистики:

	N	Минимум	Максимум	Среднее	Среднекв. отклонение
Area	210	10.59	21.18	14.8475	2.90970
Perimeter	210	12.41	17.25	14.5593	1.30596
Compactness	210	.8081	.9183	.870999	.0236294
LengthOfKernel	210	4.8990	6.6750	5.628533	.4430635
WidthKernel	210	2.630	4.033	3.25860	.377714
Assymetry	210	.7651	8.4560	3.700201	1.5035571
LengthOfKernelGroove	210	4.519	6.550	5.40807	.491480
N валидных (по списку)	210				

Параметр "Компактность" был исключён из анализа из-за малого отклонения значений наблюдений и прямой зависимости от других параметров.

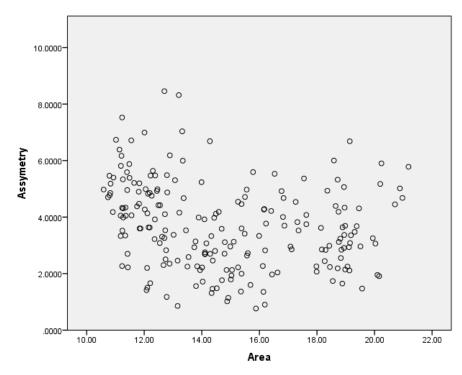


Рисунок 1. Диаграмма рассеяния "Площадь" – "Коэффициент асимметрии".

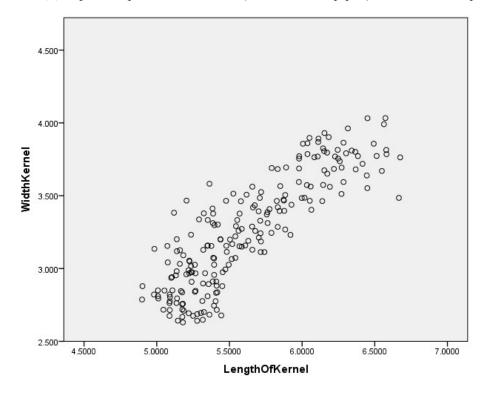


Рисунок 2. Диаграмма рассеяния "Длина" – "Ширина".

Процедура применения метода:

Выполним кластеризацию методом К-средних для трёх кластеров, перед применением метода параметры наблюдений были стандартизованы.

Результаты:

Конечные	центры	кластеров

	Кластер		
	1	2	3
Zscore(Area)	1.22360	16492	-1.00292
Zscore(Perimeter)	1.23280	18537	99258
Zscore(LengthOfKernel)	1.21703	26401	90441
Zscore(WidthKernel)	1.12769	02827	-1.03957
Zscore(Assymetry)	04668	78303	.77352
Zscore(LengthOfKernelGroove)	1.27715	60250	64594

Расстояния между конечными центрами

кластеров

	1314010602				
Кластер	1	2	3		
1		3.398	4.845		
2	3.398		2.283		
3	4.845	2.283			

Число наблюдений в каждом

Пропущенные

кластереКластер169.000268.000373.000Валидные210.000

.000

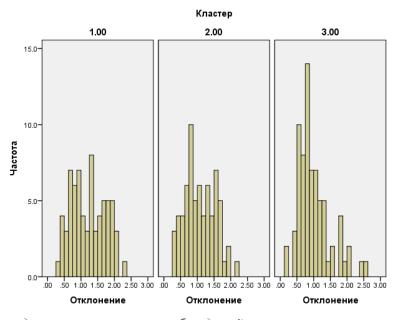


Рисунок 3. Распределение отклонения наблюдений от центра кластера по кластерам.

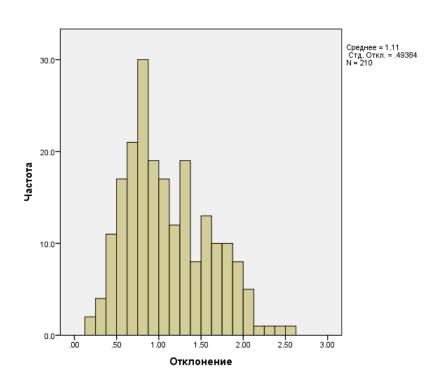


Рисунок 4. Общая гистограмма отклонений.

По полученным результатам можно сделать вывод, что точность определения кластеров наблюдений вполне приемлемая: среднее расстояние наблюдений до центра кластера в 2.2 раза меньше минимального расстояния между центрами кластеров. Данные результаты позволяют определить, к какому сорту пшеницы относятся отдельные зёрна.

Теперь необходимо провести иерархический кластерный анализа тремя различными методами, во всех методах будем использовать квадрат Евклидовой меры.

Первый метод - ближайшего соседа.

Результаты:

Число наблюдений в каждом

	кластере	
Кластер	1	207
	2	1
	3	2

Среднеквадратичное отклонение от центра кластера: 5,834466

Расстояния между центрами кластеров			
1,00000 2,00000 3,00000			
1,0000	0	2,21834	3,48257
0		9	9
2,0000	2,21834	0,00000	1,42730
0	9		1
3,0000	3,48257	1,42730	0,00000
0	9	1	

Довольно большое отклонение и тот факт, что почти все наблюдения попали в первый кластер показывают, что данный метод не годится для выбранного массива.

Второй метод - метод центроидной кластеризации:

Число наблюдений в каждом

	кластере)
Кластер	1	134
	2	74
	3	2

Расстояния между центрами кластеров			
1,00000 2,00000 3,00000			
1,0000	0	4,00826	3,15832
0		2	4
2,0000	4,00826	0,00000	5,24931
0	2		8
3,0000	3,15832	5,24931	0,00000
0	4	8	

Среднеквадратичное отклонение: 2,205815

Данный метод показывает лучшие результаты, чем предыдущий, но количество наблюдений в третьем кластере по-прежнему необычайно мало, а значит, что и этот метод скорее всего не подходит.

Третий метод - метод Уорда:

Число наблюдений в каждом

кластере			
Кластер	1		68

2	74
3	68

	1,00000	2,00000	3,00000
1,0000	0	3,54371	2,17424
0		7	3
2,0000	3,54371	0,00000	4,68902
0	7		1
3,0000	2,17424	4,68902	0,00000
0	3	1	

Среднеквадратичное отклонение: 1,53404

Последний метод оказался наиболее подходящим из всех трёх, результаты довольно близки к результатам применения метода К-средних, что позволяет сделать вывод о правдоподобии полученных разбиений.

Вывод:

Произошло знакомство с теорией и практикой решения задачи кластеризации в среде SPSS Statistic. Для выбранного массива данных были проведены различные кластерные анализы.